
PROG-1

Addressing Modes

The MPU6800 microprocessor has five addressing modes available to the

programmer.

1. Immediate: In this mode of addressing, the operand is contained in the

next memory location. For example, to execute a "load

accumulator with the hex number 55" instruction, it would

look like this in memory.

Memory Location Binary Contents Hex Contents

100 10000110 86 (LDA A IMM)

101 01010101 55 (DATA)

 86 (in hex) is the LDA A immed. instruction. 55 (in hex) is

the data. The result after the above is the hex number 55

has been loaded into the A accumulator.

2. Direct: In this mode of addressing the address of the operand is

contained in the next memory location. This enables one to

directly address the first 256 bytes of memory (0-255=256

Bytes). As an example, to load accumulator A with the

contents of address 67 (in hex), consecutive memory

locations would look like this.

Memory Location Binary Contents Hex Contents

100 10010110 96 (LDA A DIR)

101 01100111 67(Address that
 contains data)

 96 (in hex) is the LDA A Direct instruction.

 67 (in hex) is the address where the data is to be fetched

from. So, whatever is in location 67 would be loaded into

accumulator A.

PROG-2

3. Extended: This mode of addressing is used to address memory locations

above 255. In this mode of addressing, the next memory

location contains the higher order 8 bits of the address,

and the 2nd memory location contains the lower order 8 bits

of the address. For example, to load the A accumulator with

the contents of memory location hex 4057, the consecutive

memory locations would look like this.

Memory Location Binary Contents Hex Contents

100 10110110 B6(LDA A EXT)

101 01000000 40(ADDR HIGH)

102 01010111 57(ADDR LOW)

B6(in hex) is the LDA EXT instruction. 40 (in hex) is the

most significant half of the address where the data is

stored and 57 (in hex) is the least significant half of the

address where the data is stored. After the above

execution, whatever is in location 4057 will be loaded into

accumulator A.

4. Indexed: In-this mode of addressing, the address contained in the

next memory location is added to the contents of the index

registers lower 8 bits to form a new "effective address".

If there was a carry, it is added to the upper 8 bits of

the index register. The new "effective address" is the

location in memory which contains the operand. The

"effective address" is held in a temporary address register

such that the contents of the index register are not

destroyed. As an example, if the index register contains

hex 14, and a load accumulator A from hex location 21

indexed by the contents of the index register is executed,

PROG-3

the address of 21 (located in the next memory location) is

added to the contents of the index register (14) to form a

new "effective address" of hex 35.

Memory Location Binary Contents Hex Contents

100 10100110 A6(LDA A Indexed)

101 00100001 21

A6(in hex) is the LDA INDEXED instruction.

21 (in hex) contains part of the address of the

instruction. To the address of 21 must be added the

contents of the index register to form a new "effective

address" hex of 35 (21 + 14). After the above execution,

the contents of memory location hex 35 will be loaded into

accumulator A.

5. Relative: In this mode of addressing, program control is transferred

to someplace other than the next sequential memory

location. Transfer in this mode, is limited to 125 memory

locations back from the present location or 129 locations

ahead of the present location. Since this is a 2 byte

instruction in that it takes two memory locations, transfer

is always referenced from the next instruction which the

MPU would execute if it did not transfer control(or

relative to the present count of the program counter). All

transfers back from the present location are given in 2's

complement (represented in hex) from the (present location

+ 0002).

 All transfers forward are given in the actual count forward

from (the present memory location + 0002) to the memory

location where program control is transferred. The actual

PROG-4

count forward is given in straight binary (represented in

hex).

TRANSFER FORWARD FROM PRESENT LOCATION
 Assume it is desired to branch from the present location at 0100 + 0002

(in hex) to location 0147 (in hex). First, it should be verified that the branch is

not beyond the allowable range of 199 locations from the present location. 45 (in

hex) = 5X16° + 4x16'=5+64- 69 (decimal) Therefore 45 hex is within our allowable

range. At memory location 0100, a BRA instruction is stored. Memory location 0101

contains the count of memory locations which will be branched over starting from

0102.

Final Destination = 0147

Present Location + 0002 = 0102

Number of Locations to Branch over = 45

Memory Location Binary Contents Hex Contents

100 00100000 20 (BRA)

101 01000101 45 (No. of locations to branch over)

20 (in hex) is the BRA (Branch Always) instruction.

45 (in hex) is the number of locations which will be branched over starting with

0102 Therefore, the next instruction the MPU will execute will be located at 102 +

45 or hex location 0147.

TRANSFER SACK FROM PRESENT LOCATION
 Assume it is desired to branch from the present location of 0100 back to

memory location 0090. This is accomplished in a similar manner as the forward

branch, except the number of locations is given in 2's complement (represented in

hex) from the present location + 0002. The 2's complement form places a 1 in bit 8

which, in effect tells the processor to branch back rather than forward.

PROG-5

Present Location + 0002 = 0102

Final Destination = 0090

Number of Locations to Branch back over = 72

Number of Locations to Branch back over = 01110010 (72 hex)

1's complement = 10001101

2's complement = 10001110 (8E)

Memory Location Binary Contents Hex Contents

100 00100000 20 (BRA)

101 10001110 8E (No. of locations to branch back

over)

20 (in hex) is the BRA (Branch Always) instruction. 8E is the number of locations

(in 2's complement) which will be branched back over starting from 0102. (present

location + 0002 which is the count in the program counter). Therefore, the next

instruction the MPU will execute will be located at memory location 0090 (hex)

PROG-6

Sample Program

Problem: Write a program, in machine language and in M6800 source

language, to add the decimal numbers 25, 35, 50, and 17.

Store the answer at RAM location 0A. Assemble the source

program and compare the assembled program with the machine

language program.

Solution: 3510 = 438 = 1000112 = 2316

5010 = 628 = 1100102 = 3216

1710 = 218 = 0100012 = 1116

2510 = 318 = 0110012 = 1916

Memory(in HEX)
Location

Machine
Language

Comment

000B 10000110 (86) LDA A IMM
000C 00011001 (19) DATA TO BE PUT IN A
000D 11000110 (C6 LDA B IMM.
000E 00100011 (23) DATA TO BE PUT IN B
000F 00011011 (1B) ADD THE A & B REGISTER
0010 11000110 (C6) LDA B IMM
0011 00110010 (32) DATA TO BE PUT IN B
0012 00011011 (1B) ADD THE A&B REGISTER
0013 11000110 (C6) LDA B IMM
0014 00010001 (11) DATA TO BE PUT IN B
0015 00011011 (1B) ADD THE A&B REGISTER
0016 10010111 (97) STORES A IN LOCATION
0017 00001010 (0A) 0A

PROG-7

PROG-8

Sample Program: Loading and Storing Data

Write a program for the following sequence.

1. Begin with data 7F and load it into the A accumulator then store the data in

memory location 50.

2. From location 50, load the data into the B accumulator then store it extended

in memory location 0113.

3. Reload data into the A accumulator from the extended memory location and

store the data in location 6A then Jump back to the beginning.

Assume this program will be used in a microcomputer system with Hex Ram addresses
000 through 200 (512 bytes) and ROM addresses 800 through FFF (2048 bytes). All
numbers are in Hex relation.

Source Program

Assembled Program

PROG-9

Sample Program: Subtracting absolute value of two numbers

Problem: Calculate a quantity Z which will be the absolute value of Y
subtracted from the absolute value of W. If the result is less
than or equal to zero, set Z equal to zero.

Z = |W| - |Y| if |W| > |Y|

Z = 0 if |W| < |Y|

Source Program

100 NAM ABS
110 OPT MEM
120 ORG 0
130 W RMB 1
140 Y RMB 1
150 Z RMB 1
160 ORG $0500
170 LDA A W
180 BGE Z1 IS W POSITIVE
190 NEG A W WAS NEG. MAKE POS.
200 Z1 LDA B Y
210 BGE Z2 IS Y POSITIVE
220 NEG B Y WAS NEG. MAKE POS.
230 Z2 SBA SUBTRACT Y FROM W
240 BGT Z3 IS Z POSITIVE
250 CLR A RESULT WAS ZERO OR NEG.
260 Z3 STA A Z ANSWER
270 MON

Assembled Program

PROG-10

X A

A > 0

A A

YES NO

Y B

B > 0

B B

YES NO

A-B A

A > 0

0 A

YES NO

A Z

PROG-11

ROM ADDRESS ROM CONTENT INSTRUCTION

0018 86 LDA A #2

0019 02

001A 8B ADD A #3

001B 03

001C F6 STA A $402B

001D 40

001E 2B

INDICATES IMMEDIATE MODE OF ADDRESSING

$ INDICATES A HEX NUMBER

NOTE: ADDRESS 402B MUST BE A RAM, PIA, OR ACIA.

DESCRIPTION OF PROGRAM: The A register is loaded with the number 2. Then the number

3 is added to the 2 in the A register with the result of 5
left in the A register. The 5 in the A register is then
stored in location 402B.

PROG-12

Cycle By Cycle Description of Sample Program

Cycle Description

0 The program counter is assumed to be set at 0018.

1 The program counter is gated onto the Address Bus (A0-A15) and the
read/write (R/W) line is put in a high state corresponding to a read
condition. This results in ROM address 0018 be accessed and the contents
of this address (86) being loaded into the instruction register (IR). The
program counter is then incremented and becomes 0019.

2 The byte "86" in the IR is decoded and interpreted to be a load A
immediate (LDA A IMM) instruction. Simultaneously, the program counter is
gated onto the Address Bus and the R/W line is set high corresponding to
a read condition. This accesses ROM address 0019 with the contents of
this address (02) being put on the Data Bus (D0-D7). Since the
instruction was decoded to be a LDA A immediate, the "02" is loaded into
the A register. The program counter is then incremented and becomes 001A.

3 The sequence in (1) is repeated except ROM address 001A is accessed
resulting in 8B being loaded into the instruction register. The program
counter is incremented to 001B.

4. The sequences in (2) is repeated except the instruction is decoded to be
an ADD A immediate. Thus, the data "03" is added to the A register giving
a result in the A register of "05". The program counter is incremented to
001C.

5 The sequences in (1) is repeated which results in F6 being loaded into
the instruction register. The program counter is incremented to 001D.

6 The instruction register is decoded and determined to be a STA A
extended. This causes the MPU to interpret the next two sequential
locations in memory (00lD & 001E) as a 16 bit address with 001D the most
significant and 001E the L.S. half of the address. Simultaneously, the
number in ROM address 001D is read by the MPU and saved the program
counter is incremented to 001E.

7 The contents of ROM address 001E (2B) is read by the MPU and saved. The
MPU now has a full 16 bit address saved of 402B.

8 The extended address of 402E is gated onto the address bus register.

9 Address 402B is accessed and the R/W line is put in a low state,
corresponding to a write. The data in the A register is then gated onto
the data bus and stored in location 402B.

PROG-13

Sample Program: Multiply Routine #1

This handout documents the procedures followed to solve a typical problem using the
M6800 software and software aids. The problem was the multiplication of two unsigned
eight bits numbers.

The objective was to show the general method involved in using the Motorola

Cross Assembler and Simulator to assist the programmer. The chart below illustrates
the steps followed:

THIS PROGRAM IS FOR ILLUSTRATION ONLY.
IT IS NOT THE MOST EFFICIENT MULTIPLY
ROUTINE. IT IS SHOWN ONLY AS AN EXAMPLE
OF PROGRAMMING TECHNIQUES.

PROBLEM DESCRIPTION

FLOW CHART

MNUEMONIC CODING

ASSEMBLY

SIMULATION (VERIFICATION)

PROG-14

Subroutine "MULT" will multiply two unsigned 8 bit numbers (NUM1 & NUM2) and store
the 16 bit result in locations ANS1 (Least significant 8 bits) and ANS2 (Most
significant 8 bits). The algorithm used can be best explained by an example:

 10000001 (Multiplicand) NUM1
 11111111 (Multiplier) NUM2
 10000001
 1000001
 1 000001
 10 00001
 100 0001
 1000 001
 10000 01
 100000 1
 1000000 01111111

 ANS2 ANS1

1 ANS2 is generated by shifting the multiplicand one bit to the right and

then examining the most significant bit of the multiplier--if it is a
"1", the multiplicand is added to ANS2. The multiplier is then shifted
one bit to the left and the procedure (1) is repeated. This is done
seven times to generate the seven terms of ANS2. No carry bit is
possible from these additions.

2 ANSI is generated by examining the least significant bit of the
multiplier-if it is a "1" the multiplicand is added to ANSI. The
multiplicand is then shifted left one bit and the multiplier is
shifted right one bit. The procedure (2) is repeated eight times to
generate the eight terms of ANSI. If a carry occurs after any of
these additions, one is added to ANS2.

PROG-15

PROG-16

SOURCE LISTING

LMULT 09:06 PHENIX 06/12/74

50 NAM AMULT
60 ORG 0
70 OPT MEM
95 *
96 *
100 ANS1 RMB 1
110 ANS2 RMB 1
120 NUM1 RMB 1
130 NUM2 RMB 1
140 NUM1A RMB 1
145 *
146 *
190 ORG 1000
195 *
196 *
200 MULT LDA A NUM1 ;NUM1=MULTIPLIER
210 LDA B NUM2 ;NUM2=MULTIPLICAND
220 CLR ANS1
230 CLR ANS2
240 CLC
250 LDX #7 ;LOOP COUNT
260 STA A NUM1A
270 CLR A
280 ROR NUM1A
290 YY1 TST B ;SET COND. CODES ACC.TO B
300 BPL YY2 ;CHECK FOR A 1 IN BIT 7
310 ADD A NUM1A ;OVERFLOW NOT POSSIBLE
320 YY2 CLC
330 ROR NUM1A
340 ASL B
350 DEX
360 BNE YY1 ;CONTINUE UNTIL X=0
370 STA A NUM1A
380 LDX #8 ;LOOP COUNT
390 LDA A NUM1
400 STA A NUM1A
410 CLR A
420 LDA B NUM2
430 YY3 CLC
440 ROR B
450 BCC YY4 ;IF CARRY,INCREMENT ANS2
453 ADD A NUM1A
456 BCC YY4
460 INC ANS2
470 YY4 ASL NUM1A
480 DEX
490 BNE YY3 ;CONTINUE UNTIL X=0
500 STA A ANS1
510 RTS ;FINISHED, EXIT TO MAIN
600 MON

READY

PROG-17

PAGE 1 AMULT 06/12/74 09:08.00 ASSEMBLY LISTING

00050 NAM AMULT
00060 0000 ORG 0
00070 OPT MEM
00095 *
00096 *
00100 0000 0001 ANS1 RMB 1
00110 0001 0001 ANS2 RMB 1
00120 0002 0001 NUM1 RMB 1
00130 0003 0001 NUM2 RMB 1
00140 0004 0001 NUM1A RMB 1
00145 *
00146 *
00190 03E8 ORG 1000
00195 *
00196 *
00200 03E8 96 02 MULT LDA A NUM1 ;NUM1=MULTIPLIER
00210 03EA D6 03 LDA B NUM2 ;NUM2=MULTIPLICAND
00220 03EC 7F 0000 CLR ANS1
00230 03EF 7F 0001 CLR ANS2
00240 03F2 0C CLC
00250 03F3 CE 0007 LDX #7 ;LOOP COUNT
00260 03F6 97 04 STA A NUM1A
00270 03F8 4F CLR A
00280 03F9 76 0004 ROR NUM1A
00290 03FC 5D YY1 TST B ;SET COND. CODES ACC.TO B
00300 03FD 2A 02 BPL YY2 ;CHECK FOR A 1 IN BIT
00310 03FF 9B 04 ADD A NUM1A ;OVERFLOW NOT POSSIBLE
00320 0401 0C YY2 CLC
00330 0402 76 0004 ROR NUM1A
00340 0405 58 ASL B
00350 0406 09 DEX
00360 0407 26 F3 BNE YY1 ;CONTINUE UNTIL X=0
00370 0409 97 04 STA A NUM1A
00380 040B CE 0008 LDX #8 ;LOOP COUNT
00390 040E 96 02 LDA A NUM1
00400 0410 97 04 STA A NUM1A
00410 0412 4F CLR A
00420 0413 D6 03 LDA B NUM2
00430 0415 0C YY3 CLC
00440 0416 56 ROR B
00450 0417 24 07 BCC YY4 ;IF CARRY,INCREMENT ANS2
00453 0419 9B 04 ADD A NUM1A
00456 041B 24 03 BCC YY4
00460 041D 7C 0001 INC ANS2
00470 0420 78 0004 YY4 ASL NUM1A
00480 0423 09 DEX ;
00490 0424 26 EF BNE YY3 ;CONTINUE UNTIL X=0
00500 0426 97 00 STA A ANS1
00510 0428 39 RTS ;FINISHED, EXIT TO MAIN
00600 MON

 SYMBOL TABLE:
 ANS1 0000 ANS2 0001 MULT 03E8 NUM1 0002 NUM1A 0004
 NUM2 0003 YY1 03FC YY2 0401 YY3 0415 YY4 0420
STOP

RUNNING TIME: 69.4 SECS I/O TIME: 26.1 SECS

PROG-18

MULTIPLY SUBROUTINE #2

This subroutine multiplies two eight bit unsigned binary numbers. The

product of the two eight bit numbers is formed by shifting the multiplier one bit

to the right and checking for a one or zero. If a one is present, the multiplicand

is added to the product (answer).

The multiplicand is then shifted one bit to the left. This has the effect

of multiplying the multiplicand by two. The multiplier is again shifted one bit to

the right and the shifted bit checked for a one or zero. If it is a one, the

shifted multiplicand is added to the product. The process is repeated until the

multiplier has no more ones remaining. When no more ones remain in the multiplier,

the problem is finished and the product is the final product.

Example

 Multiply 17010 x 510 = 85010

 17010 = AA16

 5 = 0516

 1010 1010 Multiplicand (M)
 0000 0101 Multiplier (N)

 This one requires the multiplicand M
 to be added to product.
 1010 1010 M
 10 1010 10 4 x M This one requires the multiplicand shifted
 11 0101 0010 right twice (4 x M) to be added to the
 3 5 2 product.

 Since all remaining higher bits of the
 multiplier are zero, the problem is
 AA16 x 516 = 35216 = 85010 finished.

PROG-19

FLOW CHART OF MULTIPLY ROUTINE #2

MULTIPLIER
EQUAL TO
ZERO

MULT

CLEAR
TEMP. RAM
LOCATIONS

IS

LSB OF
MULTIPLER

SET

SHIFT
MULTIPLIER

RIGHT ONE BIT

SHIFT
MULTIPLICAND
LEFT ONE BIT

ADD
MULTIPLICAND
TO ANSWER

RTS

YES

YES

NO

NO

PROG-20

CMULT 12/05/74

100 NAM CMULT
110 OPT MEM
120***
130*REV002 12-5-74 BAINTER
140*
150* THIS SUBROUTINE MULTIPLIIES TWO 8 BIT BYTES.
160* THE MULTIPICAND IS STORED IN BITE NB1.
170* THE MULTIPLIER IS STORED IN BITE NB2.
180* THE RESULT IS STORED IN BYTE ANS2 AND ANS1.
190* ANS2. IS THE UPPER BITE OF THE RESULT.
200* ANS1. IS THE LOWER BITE OF THE RESULT.
210***
220*
230 ORG 0
240*
250 NB1A RMB 1 *SHIFT MULTIPLICAND STORE.
260 NB1 RMB 1 *MULTIPLICAND
270 NB2 RMB 1 *MULTIPLIER
280 ANS2 RMB 1 *UPPER BYTE OF RESULT
290 ANS1 RMB 1 *LOWER BYTE OF RESULT
300*
410 ORG $10
320*
330 MULT CLR A
340 STA A ANS2
350 STA A ANS1
360 STA A NB1A
370 LDA A NB2 *NB2=MULTIPLIER
380 BRA LOOP1
390 LOOP2 ASL NB1 *SHIFT MULTIPLICAND LEFT.
400 ROL NB1A *NB1A=UPPER BYTE OF MULTIPLICAND
410 LOOP1 LSR A *SHIFT MULTIPLIER RIGHT
420 BCC NOADD *SHIFT AND DON'T ADD
430 LDA B NB1 *ADD SHIFTED MULTIPLICAND-
440 ADD B ANS1 *TO ANS1 AND ANS2
450 STA B ANS1
460 LDA B NB1A
470 ADC B ANS2 *ANS2=UPPER BYTE OF RESULT
480 STA B ANS2
490 TST A
500 NOADD BNE LOOP2 *START SHIFTING AGAIN.
510 END RTS *FINISHED!!!
520 MON

PROG-21

00100 NAM CMULT
00110 OPT MEM
00120 ***
00130 *REV002 12-5-74 BAINTER
00140 *
00150 * THIS SUBROUTINE MULTIPLIIES TWO 8 BIT BYTES.
00160 * THE MULTIPICAND IS STORED IN BITE NB1.
00170 * THE MULTIPLIER IS STORED IN BITE NB2.
00180 * THE RESULT IS STORED IN BYTE ANS2 AND ANS1.
00190 * ANS2. IS THE UPPER BITE OF THE RESULT.
00200 * ANS1. IS THE LOWER BITE OF THE RESULT.
00210 ***
00220 *
00230 0000 ORG 0
00240 *
00250 0000 NB1A RMB 1 *SHIFT MULTIPLICAND STORE.
00260 0001 NB1 RMB 1 *MULTIPLICAND
00270 0002 NB2 RMB 1 *MULTIPLIER
00280 0003 ANS2 RMB 1 *UPPER BYTE OF RESULT
00290 0004 ANS1 RMB 1 *LOWER BYTE OF RESULT
00300 *
00310 0010 ORG $10
00320 *
00330 0010 4F MULT CLR A
00340 0011 97 03 STA A ANS2
00350 0013 97 04 STA A ANS1
00360 0015 97 00 STA A NB1A
00370 0017 96 02 LDA A NB2 *NB2=MULTIPLIER
00380 0019 20 06 BRA LOOP1
00390 001B 78 00 01 LOOP2 ASL NB1 *SHIFT MULTIPLICAND LEFT.
00400 001E 79 00 00 ROL NB1A *NB1A=UPPER BYTE OF MULTIPLICAND
00410 0021 44 LOOP1 LSR A *SHIFT MULTIPLIER RIGHT
00420 0022 24 0D BCC NOADD *SHIFT AND DON'T ADD
00430 0024 D6 01 LDA B NB1 *ADD SHIFTED MULTIPLICAND-
00440 0026 DB 04 ADD B ANS1 *TO ANS1 AND ANS2
00450 0028 D7 04 STA B ANS1
00460 002A D6 00 LDA B NB1A
00470 002C D9 03 ADC B ANS2 *ANS2=UPPER BYTE OF RESULT
00480 002E D7 03 STA B ANS2
00490 0030 4D TST A
00400 0031 26 E8 NOADD BNE LOOP2 *START SHIFTING AGAIN.
00410 0033 39 END RTS *FINISHED!!!
00420 MON

 SYMBOL TABLE:

 ANS1 0004 ANS2 0003 END 0033 LOOP1 0021 LOOP2 001B
 MULT 0010 NB1 0001 NB1A 0000 NB2 0002 NOADD 0031

PROGRAM STOP AT 0

USED 20.24 UNITS

PROG-22

PIA POLING ROUTINE #1

The following routine illustrates one of the various techniques of

determining which PIA has generated an interrupt. Recall that each PIA has an A

side and a B side which may cause the IRQ line to go low thus generating an

interrupt. All the PIA interrupt lines are tied together and connected to the one

interrupt input pin (IRQ) of the MPU. Consequently, when an interrupt is generated,

some bit 6 or bit 7 of a PIA is set. The only way to determine where the interrupt

came from is to poll bit 6 and bit 7 of each PIA control register to see if it is a

"1" (thus an interrupt).

This routine polls the control registers of two PIA's. It reads the

contents of each control register and executes the BMI instruction which

effectively checks to see if bit 7 is set. If bit 7 is not set, a ROL A instruction

is executed which shifts bit 6 into bit 7 thus permitting use of the BMI

instruction again. Once a set control bit is detected, it branches to a subroutine

to service that particular interrupt. After servicing the interrupt, an RTI

instruction is executed which causes the processor to return to whatever it was

doing before the interrupt.

PROG-23

Flow Chart for PIA #1 Poling Routine

POL

READ
FIRST
PIA

IS
BIT 7
SET

SHIFT
LEFT ONE

BIT

READ
NEXT
PIA

YES

NO

NO

IS
BIT 7
SET

ALL
PIAS
READ

RTI

PIA1AC ROUT 1
PIA1BC ROUT 3
PIA2AC ROUT 5
PIA2BC ROUT 7

RTI

YES
PIA1AC ROUT 2
PIA1BC ROUT 4
PIA2AC ROUT 6
PIA2BC ROUT 8

RTI

YES

SERVICE ROUTINES
(CR7 SET)

SERVICE ROUTINES
(CR6 SET)

NO

PROG-24

Source Program for PIA #1 Poling Routine

EDU 12:09EST 02/07/75
100 NAM POLL
110 OPT MEM
120 PIA1AC EQU $4005
130 PIA1BC EQU $4007
140 PIA2AC EQU $4009
150 PIA2BC EQU $4008
200 ORG $100
210 POLL LDA A PIA1AC
220 BMI ROUT1
230 ROL A
240 BMI ROUT2
250 LDA A PIA1BC
260 BMI ROUT3
270 ROL A
280 BMI ROUT4
290 LDA A PIA2AC
300 BMI ROUT5
310 ROL A
320 BMI ROUT6
330 LDA A PIA2BC
340 BMI ROUT7
350 ROL A
360 BMI ROUT8
370 RTI
380 ROUT1 NOP *THIS IS PIA1AC CA1 SERVICE ROUTINE
390 RTI
400 ROUT2 NOP *THIS IS PIA1AC CA2 SERVICE ROUTINE
410 RTI
420 ROUT3 NOP *THIS IS PIA1BC CB1 SERVICE ROUTINE
430 RTI
440 ROUT4 NOP *THIS IS PIA1BC CB2 SERVICE ROUTINE
450 RTI
460 ROUT5 NOP *THIS IS PIA2AC CA1 SERVICE ROUTINE
470 RTI
480 ROUT6 NOP *THIS IS PIA2AC CA2 SERVICE ROUTINE
490 RTI
500 ROUT7 NOP *THIS IS PIA2BC CB1 SERVICE ROUTINE
510 RTI
520 ROUT8 NOP *THIS IS PIA2BC CB2 SERVICE ROUTINE
530 RTI
540 MON

PROG-25

Assembled Program for PIA #1 Poling Routine

00100 NAM POLL
00110 OPT MEM
00120 4005 PIA1AC EQU $4005
00130 4007 PIA1BC EQU $4007
00140 4009 PIA2AC EQU $4009
00050 4008 PIA2BC EQU $4008
00200 0100 ORG $100
00210 0100 B6 4005 POLL LDA A PIA1AC
00220 0103 2B 1C BMI ROUT1
00230 0105 49 ROL A
00240 0106 2B 1B BMI ROUT2
00250 0108 B6 4007 LDA A PIA1BC
00260 010B 2B 18 BMI ROUT3
00270 010D 49 ROL A
00280 010E 2B 17 BMI ROUT4
00290 0110 B6 4009 LDA A PIA2AC
00300 0113 2B 14 BMI ROUT5
00310 0115 49 ROL A
00320 0116 2B 13 BMI ROUT6
00330 0118 B6 4008 LDA A PIA2BC
00340 011B 2B 10 BMI ROUT7
00350 011D 49 ROL A
00360 011E 2B 0F BMI ROUT8
00370 0120 3B RTI
00380 0121 01 ROUT1 NOP *THIS IS PIA1AC CA1 SERVICE ROUTINE
00390 0122 3B RTI
00400 0123 01 ROUT2 NOP *THIS IS PIA1AC CA2 SERVICE ROUTINE
00410 0124 3B RTI
00420 0125 01 ROUT3 NOP *THIS IS PIA1BC CB1 SERVICE ROUTINE
00430 0126 3B RTI
00440 0127 01 ROUT4 NOP *THIS IS PIA1BC CB2 SERVICE ROUTINE
00450 0128 3B RTI
00460 0129 01 ROUT5 NOP *THIS IS PIA2AC CA1 SERVICE ROUTINE
00470 012A 3B RTI
00480 012B 01 ROUT6 NOP *THIS IS PIA2AC CA2 SERVICE ROUTINE
00490 012C 3B RTI
00500 012D 01 ROUT7 NOP *THIS IS PIA2BC CB1 SERVICE ROUTINE
00510 012E 3B RTI
00520 012F 01 ROUT8 NOP *THIS IS PIA2BC CB2 SERVICE ROUTINE
00530 0130 3B RTI
00540 MON

PROG-26

PIA POLING ROUTINE #2

The routine presented on the following pages describes a way of

determining where an interrupt came from out of a possible 16. (4 PIA's). Recall

each PIA has an A side and a B side. Each side of each PIA has a control register

of which bit 6 and/or bit 7 may get set if an interrupt came in on the interrupt

lines (CA1, CA2, CB1, and CB2). As mentioned above, this is a way of poling the

control registers for the interrupts. There are many other ways of accomplishing

this task.

This routine, called "POL" will read the control register of each PIA,

starting with the first PIA and determine if bit 6 or bit 7 is set, thus indicating

an interrupt. When an interrupt has been detected via bit 6 or bit 7 of the control

register, the MPU will branch to a subroutine designated to service that particular

interrupt. On completion of servicing an interrupt, the MPU starts the poling

sequence again with the first PIA. Only after all control registers have been

poled, and no interrupts detected, does the MPU return to the program it was

executing before it was interrupted. A branch to POL (BRA POL) instruction must be

the last instruction of each servicing routine.

PROG-27

Flow Chart for PIA #2 Poling Routine

POL

READ
1ST
PIA

BIT
6 or 7
SET

SUBROUTINE
FOR BIT 7 READ

NEXT
PIA

YES

NO

NO IS
THIS
RTI

RTI

YES

YES

NO IS
BIT 7
SET

SUBROUTINE
FOR BIT 6

PROG-28

Source Program for PIA #2 Poling Routine

100 NAM PIA
105 OPT MEM
110 ORG 0
130 SETX RMB 2
140 SPC 4
150 ORG $2004
160 PIA1AD RMB 1
165 PIA1AC RMB 1
170 PIA1BD RMB 1
175 PIA1BC RMB 1
180 PIA2AD RMB 1
185 PIA2AC RMB 1
190 PIA2BD RMB 1
195 PIA2BC RMB 1
200 ORG $2010
210 PIA3AD RMB 1
215 PIA3AC RMB 1
220 PIA3BD RMB 1
225 PIA3BC RMB 1
230 ORG $2020
240 PIA4AD RMB 1
245 PIA4AC RMB 1
250 PIA4BD RMB 1
255 PIA4BC RMB 1
260 SPC 4
270 ORG $1000
280 * $1000 THRU $102D ARE THE SERVICING ROUTINES
390 * FOR THE 4 PIAS
300 JMP ROUT1
310 JMP ROUT2
320 JMP ROUT3
330 JMP ROUT4
340 JMP ROUT5
350 JMP ROUT6
360 JMP ROUT7
370 JMP ROUT8
380 JMP ROUT9
390 JMP ROUT10
400 JMP ROUT11
410 JMP ROUT12
420 JMP ROUT13
430 JMP ROUT14
440 JMP ROUT15
450 JMP ROUT16

PROG-29

Source Program for PIA #2 Poling Routine

470 * THIS IS A SAMPLE ROUTINE FOR
480 * POLLING PIA INTERUPTS
490 SPC3
500 POL LDA A #$10
510 STA A SETX
520 CLR B
525 LDX #0
530 LDA A PIA1AC
540 AND A #%11000000
550 BNE INTER
560 ADD B #6
570 LDA A PIA1BC
580 AND A #%11000000
590 BNE INTER
600 ADD B #6
610 LDA A PIA2AC
620 AND A #%11000000
630 BNE INTER
640 ADD B #6
650 LDA A PIA2BC
660 AND A #%11000000
670 BNE INTER
680 ADD B #6
690 LDA A PIA3AC
700 AND A #%11000000
710 BNE INTER
720 ADD B #6
730 LDA A PIA3BC
740 AND A #%11000000
750 BNE INTER
760 ADD B #6
770 LDA A PIA4AC
780 AND A #%11000000
790 BNE INTER
800 ADD B #6
810 LDA A PIA4BC
820 AND A #%11000000
830 BNE INTER
840 RTI
845 SPC3
850 INTER STA B SETX+1
860 LDX SETX
865 TST A
870 BMI SERVE
880 ADD B #3
885 STA B SETX+1
890 LDX SETX
900 SERVE JMP 0,X JUMP TO A SERVICE ROUTINE
901 * BASED ON THE VALUE OF X
910 MON

